1. 2026 Campus Plan
2. Project Overview
3. Sustainability Goals
4. Geo-Exchange system
5. Project Sequencing
Figure 2-9. An illustration of the potential initiatives of this planning framework, along with longer-term opportunity sites that are indicated by the masked areas.

Potential Components in the Planning Framework

We conclude this section with a reminder that while campus planning does not determine what will be built, it does make suggestions about where buildings might be located and how they might be integrated into a campus environment that retains Princeton's distinctive sense of place and enables the University to carry out its mission. The accompanying graphic shows where the projects referenced in this section could be located, and the following section provides more detail about each of them.

Potential Projects and Initiatives

**Campus-Wide**
1. Washington Road Streetscape Enhancements
2. Lake Carnegie Landscape
3. East-West Campus Connector
4. North-South Campus Connector

**Central Campus**
5. Residential College Sites
6. Diagonal Walk
7. Frist/Guyot/McCosh Node; Wilson College, Eno Hall, 1915 Hall Sites
8. Dillon Gym Expansion
9. Potential Residential Mixed-Use Corridor

**East Campus**
10. New Space for Engineering and Environmental Studies
11. East Campus Entry
12. Enhancements behind 185 Nassau Street and along William Street

**Lake Campus**
13. Lake Campus Walk
14. Tiger Lane Crossing and Transit Hub
15. Academic Partnerships, Innovation Space, Administration and Housing
16. Athletics
17. Parking
18. Campus Meadow

**Forrestal Campus**
19. Landscape and movement improvements
20. Cycling connection improvements to main campus and Forrestal Village
21. ReCAP Facility

*Campus Plan 2026*
Cultivating Community

The growth in campus enrollment and the introduction of new and expanded fields of academic inquiry will result in a University that is larger and more diverse than ever before. The planning challenge is to create opportunities and incentives for this new population to share experiences and build community. One way to do this is to introduce two key corridors – or campus connectors – to knit together a rejuvenated Central Campus, a reimagined East Campus, and an exciting new Lake Campus south of the lake. The East-West Campus Connector would extend from the Graduate College on the west to a new East Campus node, and the North-South Campus Connector would extend through the East Campus from Nassau Street across Lake Carnegie and eventually to Route 1. These connectors would help to facilitate pedestrian and cycling movement throughout the campus and between the campus and its surrounding communities.

Another strategy for facilitating interaction and community is to create “nodes” that provide settings, amenities and services that support serendipitous and planned encounters among students, faculty, staff and colleagues, along with community members and visitors from outside the University. These can be social or dining settings, mixed use spaces, or other kinds of spaces that bring members of the campus and outside communities together to explore, critique, collaborate and develop new ideas. The future campus will need spaces where students and faculty can work together on innovative ideas not only with each other, but with outside partners from the academic, corporate, non-profit and government sectors.

The campus planning framework envisions a campus with three distinct yet cohesive areas: Central Campus, East Campus and Lake Campus. The campus would be connected through multiple internal walkways and pathways, but also by: Washington Road, a corridor that would actively connect the three parts of campus to one another and to surrounding communities; an East-West Campus Connector that would facilitate movement between the east and central campus while supporting further growth over time on the east campus; and a North-South Campus Connector that would enhance connectivity between the existing campus and new campus development south of the lake. Lake Carnegie would become a signature feature and a highly valued campus and community amenity at what would become the geographic center of the campus.
Campus Plan Principles

- Provide an integrated environment for teaching, living, learning and research
- Enhance the campus’s distinctive sense of place
- Foster a setting that is welcoming and supportive and encourages positive interaction and exchange
- Create a climate that encourages thoughtful and creative approaches to sustainability
- Serve communities that extend beyond the campus

**Figure 3-12. East Campus Projects and Initiatives**

- Node
- Potential building
- Longer-term opportunity site
- Existing movement corridor
- Enhanced movement corridor
- New movement corridor

Quantum Institute for Quantum Science & Engineering and School of Engineering and Applied Science

Concept Design
Quantum Science

There is a vibrant community at Princeton working on quantum science and engineering across many departments. The Princeton Quantum Initiative brings together faculty and students across engineering and the natural sciences who are working on a wide range of topics in quantum information science.
Quantum Institute Value Proposition

・Utilize on site geo-exchange to advance the goal of achieving carbon neutrality by 2046
・Accommodate world-leading systems for quantum science
・Provide shared facilities in specialized high-end fabrication and characterization
・Foster cross-pollination among researchers from disparate backgrounds with overlapping interests
・Support new collaborations between Princeton University and the Princeton Plasma Physics Laboratory
・Attract world-class talent
・Integrate into the broader campus and create an open and connected community
・Contemporary building that respects the campus traditions and anticipates the evolving campus
・Create a welcoming academic home with world-class research facilities
The proposed location of new facilities for engineering and environmental studies is along roads that are owned and maintained by the University. Much of this area is currently occupied by surface parking lots, although the proposed sites also would encompass land that currently houses the Ferris Thompson faculty and staff apartments. Developing this area offers an opportunity to meet pressing academic needs in the near term, but it also opens up possibilities for further development over the longer term, and it offers an opportunity to extend into this part of campus more of the landscaping, building patterns and campus design features that have been long established west of Washington Road. Amenities could be incorporated into these spaces to enhance a sense of community and foster exchange, invention and innovation. As we describe in the next section of this framework, this proposed development could play a catalytic role in reimagining the entire campus east of Washington Road as a location for future academic, social and residential development with greatly improved circulation patterns within this part of the campus, and between this part of the campus and campus lands west of Washington Road and south of Lake Carnegie.

The campus planning framework proposes a campus-wide cycling network to foster an enhanced culture of cycling at Princeton. Achieving the University’s movement and sustainability objectives will require a comprehensive strategy to foster an enhanced culture of cycling at Princeton. The framework proposes a campus-wide cycling network that integrates with the neighboring municipalities’ networks and addresses the needs of commuters, community members and on-campus cyclists. This cycling network includes two major types of bicycle routes:

- **On-road paths** run along vehicular streets and are used primarily by commuters who value convenient routes that accommodate long travel distances. On-road paths may feature shared lane markings, marked bike lanes, or buffered/separated bike lanes.

- **Off-road paths** are separate from vehicular traffic. They include shared use paths, separated cycling/pedestrian paths, and trails.

School of Engineering and Applied Sciences (SEAS) Value Proposition

- Accommodate a **rapidly growing** community in state-of-the-art facilities
- Enhance **interdisciplinary** approaches to teaching and research
- Ensure strong **identity** of the new SEAS campus
- Help attract and retain world-class faculty and students
- Create a strong sense of **community**
- Maximize **flexibility**, promote **communication** of knowledge, cultivate new ideas, and allow for a natural **evolution** of research priorities
- Foster **design thinking, innovation and entrepreneurship**
- Complement and create **synergies** with academic departments located throughout the campus
- Advance the **sustainability** ethos of the university and create a **vibrant** and **healthy** environment
Existing Site
Site and Program Locations

ECE: Electrical and Computer Engineering  
MAE: Mechanical and Aerospace Engineering  
QI: Quantum Institute for Quantum Science
Required and Enhanced Setbacks

- Design provides enhanced zoning setbacks
- Design follows the building height to setback ratio along the entire FitzRandolph Road frontage
Setback to Height Ratio

3:1 Required Setback

Enhanced Envelope

3:1 Setback to height ratio
Concept Site Plan
Site Circulation
Pedestrian

PEDESTRIAN PATHWAY
Site Circulation

Bike paths
Site Circulation

Vehicular
Setback to Height Ratio

Quantum Institute for Quantum Science & Engineering and School of Engineering and Applied Science
Concept Design

100' 3:1 Setback to height ratio

Skylights

EAST-WEST ELEVATION

EAST-WEST SECTION

NORTH-SOUTH SECTION

3:1 Setback to height ratio

Princeton Stadium

FitzRandolph Road

GI

Campus Portal

ECE / MAE

100'

3:1 Setback to height ratio

Princeton Stadium

FitzRandolph Road

GI

Campus Portal

ECE / MAE

100'

ES+SEAS

3:1 Setback to height ratio

Skylights

Roberts Stadium

Ivy Lane

GI

Setback to Height Ratio

Quantum Institute for Quantum Science & Engineering and School of Engineering and Applied Science
Concept Design
Landscape Palette
Tree lined streets
Landscape Palette
Native woodland
Landscape Palette
Seasonal Native Plantings
Landscape Palette
Quads and Courtyards

[Images of various quads and courtyards, including green areas and pathways]

Quantum Institute for Quantum Science & Engineering and School of Engineering and Applied Science
Concept Design

Princeton University Quantum Institute, Princeton, USA | mecanoo   HGA
Landscape Palette
Green roofs
Stormwater

- Green Roof
- Bioretention/ Rain Gardens
- Porous and Permeable Pavement Systems
Aerial view looking Southwest

1. Quantum Institute for Quantum Science
2. Electrical and Computer Engineering
3. Mechanical and Aerospace Engineering
Aerial view of looking Northeast

1. Quantum Institute for Quantum Science
2. Electrical and Computer Engineering
3. Mechanical and Aerospace Engineering
Ivy Lane view looking West
Internal courtyard view looking East
Stadium Drive view looking South
FitzRandolph Road view looking North
Holistic Sustainability Goals and Strategies are synergistic, not discrete.
Sustainability Goals

- Design systems and building energy flows to enhance campus net zero and geo-exchange goals.
- Optimize buildings for passive solar design.
- Design high performance, energy efficient buildings and site.
- Track and reduce embodied carbon emissions across the project and set an embodied carbon reduction target.
- Use Lower carbon construction practices and track fuel use.

- Promote water stewardship: Manage and treat stormwater close to source using landscape-integrated nature based systems.
- Design for a resilient site, able to mitigate and treat current and projected future storm events using green infrastructure.
- Conserve water across potable and non potable uses.
- Offset non-potable uses with collected rainwater.

- Pursue best practices in construction and demolition, diverting waste from landfill, and reusing materials and products.
- Maximize on-campus soil reuse.
- Target zero waste operations across building and site areas.

- Enhance connections to natural habitats and existing green spaces.
- Encourage life long sustainable transportation habits for project users and optimize alternative transit connectivity.
- Increase soil health and ecology.
- Support a compact campus development footprint.

Quantum Institute for Quantum Science & Engineering and School of Engineering and Applied Science

Concept Design

Energy & Carbon

Site: habitat + ecology

Waste
Sustainability Goals

• Design for a healthier and comfortable site and interior environment
• Design for high quality interior environment
• Design for continued operations in hazard events
• Procure healthier building materials considering the full supply chain
• Create a low carbon and carbon sequestering materials palette

• LEED Gold – at minimum achieve LEED v4 Gold
• SITES and LEED ND Select Credits Consider adopting the East Campus and / or Meadows Neighborhood Site Criteria adapted from SITES and LEED ND

• Understand the opportunities to go beyond ADA. All people feel included and cared for as part of the design proposal.

• Responsible Sourcing Create a procurement strategy that is transparent to 2nd and 3rd tier suppliers and consider a Design for Freedom pilot.

• Social Justice The project provides opportunities to Minority, Women, or Disadvantaged Business Enterprises (MWDBE) organizations
Geo-Exchange System

Support the campus transition to geo-exchange and carbon neutrality.

- Geo-exchange bores will be integrated with the phased development of the entire site.
- Advanced sound attenuation techniques will be used to reduce noise impacts from drilling.
Project Sequencing

Concept Hearing - February 15, 2024
Site Plan 1 - Excavation and Geo-exchange
Site Plan 2 - Quantum Institute Building
Site Plan 3 - Electrical and Computer Engineering Building
Site Plan 4 - Mechanical and Aerospace Engineering Building